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We propose to segment two-dimensional CT scans traumatic brain injuries with various methods. These methods are hybrid,
feature extraction, level sets, region growing, and watershed which are analysed based upon their parametric and nonparametric
arguments. The pixel intensities, gradient magnitude, affinity map, and catchment basins of these methods are validated based
upon various constraints evaluations. In this article, we also develop a new methodology for a computational pipeline that
uses bilateral filtering, diffusion properties, watershed, and filtering with mathematical morphology operators for the contour
extraction of the lesion in the feature available based mainly on the gradient function. The evaluations of the classification of these
lesions are very briefly outlined in this context and are being undertaken by pattern recognition in another paper work.
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1. INTRODUCTION

Segmentation is crucial for image analysis. The segmented
features can be used for presurgery planification or diag-
nostic purposes as referred to Ciofolo and Barillot [1]. For
instance, an irregular boundary of a segmented subdural
haematoma in the parietal lobe indicates the severity of the
traumatic brain injury as acute stage. Parametric Segmen-
tation approaches such as feature extraction, hybrid, level-
sets, watershed and region-growing are experimented. These
evaluations are performed for traumatic brain injuries such
as brain atropy, subdural hygroma, subdural haematoma,
nonhaemorrhagic contrecoup contusion, and extracranial
haematoma.

Parametric hybrid approaches such as deformable mod-
els, fuzzy connectedness, and fuzzy voronoi have been
experimented, but the resultant output of the segmented
pathological features is less efficient than those of the
nonparametric segmentation approaches. In the case of
the deformable models, the vector field lacks precision to
identify the boundary of the feature. Whilst for the fuzzy

connectedness, the binary template has generated quite
effectively some results but not the exact representation of
the segmented lesion. Any voronoi diagram is obtained by
the fuzzy voronoi approach. The feature extraction approach
such as hough transform 2D lines shows no effective result
as the hough filter cannot compute the maxima in the hough
map to define a geometry to locate the lesion.

The nonparametric segmentation approaches such as
region growing approaches for confidence connected, con-
nected threshold, neighbourhood connected are experi-
mented.

Level-sets’ approaches for threshold segmentation, fast
marching, and shape detection mainly compute and analyse
the motion of the feature under a velocity field which
depends on the position, time, and geometry of the lesion as
described in the work of Hong-Kai et al. [2]. Various results
have been obtained with various ranges of constraints. The
watershed-based segmentation approach is applied where
the gradient magnitude of intensities of the pixels in the
feature undergoes a transform.

mailto:dhalila.khoodoruth@univ-pau.fr


2 International Journal of Biomedical Imaging

The contour extraction of the brain atrophy, subdu-
ral haematoma, nonhemorrhagic contusion, and subdural
hygroma is performed by a computational pipeline from the
raw CT scans.

Section 2 is the state of the art related to segmentation.
Section 3 describes the various approaches of segmentation
applied to the traumatic brain injuries with the validations
and evaluations of constraints. Section 4 describes our
approach for the computational pipeline for the contour
extraction. Section 5 concludes part of the work accom-
plished.

2. STATE OF THE ART

Basically, segmentation is the partitioning of the image into
nonoverlapping constituent regions which are homogeneous
with respect to some characteristics such as intensity or
texture as described in the work of Bazin and Pham [3]. The
identification of the pixels for a particular lesion is inherently
built-in the segmentation method which can further allow
for a pixel classification and labelling of the structure.

The dimensionality of the image is a crucial factor
to be considered before segmentation process because
image intensities are independent of the image domain. As
described in the work of Mahrous et al. [4], the original
vector field can be replaced by a derived segmented data set.
The derived set is used to produce separating surfaces in the
vector field whereas the CT scans are used for single scalar
field.

Contour based surface extraction and isosurface extrac-
tion models have been considered for the purpose of
implicit segmentation which is based on intensity threshold
where points are classified as either greater or less than a
given intensity as referred to Pham et al. [5]. The above
is compared to an explicit segmentation using deformable
models by reffering to the works of Giachetti and Zanetti
[6], Colliot et al. [7]. The purpose is not to modify the image
surface by an image vector and an internal image force.

Regarding the work of Hassouna et al. [8], these slight
ambiguities have been encountered by the intensity regions
based on the Hounsfield scale for CT scans. The purpose
is to identify the grayscale range within the lesions. As
stated in the works of Ritter et al. [9] and Heuberger et al.
[10], the threshold segmentation is efficient for bone
segmentation from CT scans. Since bone tissue attenuates
significantly more x-rays during acquisition. Therefore, these
attenuations are represented by much higher values on the
Hounsfield scale compared to soft tissues. Weber et al. [11]
developed an algorithm to modify a segmentation based
on visual examination and obtained additional information
about incorrectly segmented objects.

3. SEGMENTATION

The segmentation of these features must be considered based
upon either a geometric approach or a diffusion approach
or a fuzzy segmentation with a statistical approach as stated
by Petersch et al., Vidal et al., and John et al. [12–14]. In
the case of nonparametric level set segmentation methods,

for each pixel value from seed points,
extract sigmoid function and propagation term.
for each image intensity,

apply edge filter,
provide threshold,
adjust intensity scaling.

Algorithm 1: Algorithmic representation of level sets procedure.

Table 1: Internal constraints for fast marching level sets.

Fast marching

Sigma 0.0005 ≤ σ ≤ 0.325

Alpha −0.0005 ≥ α ≥ −0.575

Beta 0.0005 ≤ β ≤ 4.00

a geometric approach such as the distance function with
a fast sweeping function is considered where the distance
transform is calculated from the number of pixels as referred
to Sifakis and Tziritas [15]. These segmentation approaches
with different functionalities are experimented using open-
source software insight toolkit [16] and a viewer.

3.1. Methodology

3.1.1. Level sets

Based upon the excellent review of Osher and Fedkiw [17] on
level sets, the surface Γ is represented as the zero isocontour
of a scalar function (x), that is,

Γ = x : φ(x) = 0, (1)

which represents the curve or boundary of the feature.
The various approaches such as fast marching, threshold,

and shape detection use basically the algorithmic represen-
tation of the level set procedure as described in Algorithm 1.

Fast marching approach

The FastMarchingImageFilter is used in the Reinitialize Lev-
elSetImageFilter object to create a signed distance function
from the zero level set as referred to [16].

The lower threshold is set to a default value of 0.0 and
the upper threshold defines the time snapshot which is taken
from the time crossing map which is set to 85. The Cur-
vatureAnisotropicDiffusionImageFilter requires TimeStep,
NumberOfIterations, and ConductanceParameter are set as
0.125, 5, and 9 so as to detect the boundary of the structures.
The SigmoidImageFilter class requires two parameters, alpha
and beta, to define the linear transformation to the sigmoid
argument as illustrated in Figures 1(E), 1(F), 1(G), 1(H) or
reduction at edges as illustrated in Figures 1(A), 1(B), 1(C),
1(D).

By increasing the value of β to 4.00 and decreasing the
value α to −0.575 as referred to in Table 1, the size of the
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(i) A B C D

(ii) E F G H

(iii) I J K L

(iv) M N O P

Figure 1: (A, E, I, M) α = −0.0005, β = 0.0005, sigma =
0.0005, (B, F, J, N) α = −0.0015, beta = 0.0025, σ = 0.0125,
(C, G, K, O) α = −0.375, β = 0.2255, σ = 0.0225, (D, H, L,
P) α = −0.575, β = 4.00, σ = 0.0325 are (i) values set for
subdural haematoma, (ii) contrecoup contusion, (iii) extracranial
haematoma, and (iv) brain atrophy by fast marching.

feature gets smaller as illustrated in Figures 1(A), 1(B), 1(C),
1(D) and expands in Figures 1(E), 1(F), 1(G), 1(H). The
shape of the feature gets distorted as the value of σ increases
to 0.325. The threshold is generated to the time crossing map
so as to build the time solution surface Γ of the white matter
one grid point at a time where the feature is situated. Though
the time is found for one grid point, but gets distorted for
other nearby values in the features of Figures 1(i) and 1(ii).

The features of Figures 1(iii) and 1(iv) as mentioned in
Table 1 show no variation during segmentation by decreasing
or increasing the values of the constraints. The edges of the
segmented features as illustrated in Figures 1(I), 1(J), 1(K),
1(L) are almost identical. Figures 1(M), 1(N), 1(O), 1(P)
illustrate almost identical features. Since the extracranial
haematoma is outside the skull and has a homogeneous
tissues density throughout resulting in no variation of the
gradient intensities, the brain atrophy is at the rim of the
right frontal lobe of the skull where the variation of gradient
intensities is almost stagnant. Consequently, the most crucial
factor in these features (iii) and (iv) is the time crossing map,
which is set at 0.125 due to the coil rotation inside the CT
scanner.

The fast marching level set segmentation is deduced to be
the most appropriate feature extraction for the extracranial
haematoma and the brain atropy.

The extracranial haematoma is homogeneously hyper-
dense, sharply marginated, and consists of solid blood clots
found on the outside border of the skull as referred to [18].
The pixel intensities within this feature are constant through-
out. So, the gradient magnitude intensities computed do not

(v) U V W X

(vii) Y Z A1 B1

Figure 2: (U, Y) distance = 4, lower = 150, upper = 175, (V,
Z) distance = 5, lower = 155, upper = 185, (W, A1) distance =
6, lower = 160, upper = 195, (X, B1) distance = 7, lower =
175, upper = 205 are (vi) values set for the subdural haematoma
and (vii) contrecoup contusion by threshold approach.

Table 2: Internal constraints for threshold level sets.

Threshold level set

Initial distance 4 ≤ initial distance ≤ 7

Lower threshold 150 ≤ lower ≤ 175

Upper threshold 175 ≤ upper ≤ 205

vary though the σ values are within a range of 0.0005 to
0.325, the α values are within a range of −0.0005 to −0.575,
and the β values are within a range of 0.0005 to 4.00. This
implies that the sigmoid member class filter has no effect
on the time solution surface Γ which is the zero level set
representing the contour of the feature. The TimeStep of the
scanner set at 0.125 and the number of iterations are crucial
parameters to seek the proper edge of the feature.

Threshold approach

A range of intensity values are defined for the feature in
the threshold level set segmentation. A propagation term is
applied on the level set equation for the intensity range as
referred to [16] and illustrated in Figure 2.

The initial level set generates the distance map, and a
distance function is computed by applying the lower and
upper threshold. In case, the lower threshold is less than 150,
as referred to in Table 2, and the higher threshold is greater
than 205, the range of intensities for the feature does not
determine an initial surface for the gradient flow resulting
in no segmentation.

Values below 4 or greater than 7 for the distance map
result in a reduction or expansion of the initial contour, the
zero level set of the feature as the surrounding region is white
matter of homogeneous tissues density. There is very slight
change of segmented feature as illustrated in Figures 2(U),
2(V), 2(W), 2(X) and Figures 2(Y), 2(Z), 2(A1), 2(B1) by
applying the range of 4 to 7 for the distance map.

The threshold level set segmentation is the appropriate
procedure for segmenting the subdural haematoma and the
nonhemorrhagic contusion.
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Table 3: Internal constraints for shape detection level sets.

Shape detection

Initial distance 3 ≤ initial distance ≤ 9

Sigma 0.45 ≤ σ ≤ 1.1

Alpha −0.25 ≥ α ≥ −0.55

Beta 1.85 ≤ β ≤ 3.25

Propagation scaling 0.005 ≤ propagation ≤ 0.07

Curvature scaling 0.9 ≤ curvature ≤ 1.5

Since the subdural haematoma is in an acute stage,
it is hyperdense because of the attenuating properties of
the haemoglobin molecules found in the blood clots. The
stage of density takes weeks before being isodense. The
lower and upper limits of the thresholds are set at 140 and
205 so as to consider only gradient magnitude intensities
within the feature forbidding surrounding regions which
can be hypodense or isodense. By lowering the limit of the
threshold, lower gradient magnitude densities are acquired
for which the distance function does not clearly mark the
edge of the feature. The hyperdense area of the feature can
be clearly demarcated by the proper threshold setting. When
the threshold is increased to the corresponding gradient
magnitude densities applied to the distance function, a
proper segmented feature is obtained without any distortion
of the initial surface of the zero level set.

Whilst the nonhemorrhagic contrecoup contusion is an
area of higher densities of tissues sorrounded by areas of
lower densities of tissues, the varying range of the minimum
and maximum of the threshold values is adjust to the varying
range of gradient magnitude densities. Consequently, the
initial zero level set surface is computed by the adjustments
of the corresponding densities and distance map resulting in
a proper feature extraction.

Shape detection approach

Finally in the shape detection level set segmentation method,
fast marching level set segmentation is used to define the
initial level set based upon a distance map as referred to [16].

Though a wide range of parameter values are set for this
approach, no exact segmented feature is obtained, as referred
to in Table 3. The relative weightings of the propagation
and curvature terms between these two parameters do not
adjust to produce the shape boundaries of the feature.
Consequently, zero level set leaks may have been produced
through the feature’s regions of low gradient along the
boundaries of the pathological feature itself as illustrated
in Figures 3(C1), 3(D1), 3(E10), 3(F1) and Figures 3(G1),
3(H1), 3(I1), 3(J1).

3.1.2. Watershed

As described in the work of Grau et al. [19], and the excellent
review of Roerdink and Meijster [20], the method is based
on the topographical distance applied on these discrete two-

(vii) C1 D1 E1 F1

(viii) G1 H1 I1 J1

Figure 3: (C1, G1) distance = 3, α = −0.25, σ = 0.45, β = 1.85,
propagation = 0.005, curvature = 0.9, (D1, H1) distance = 5, α =
−0.35, σ = 0.65, β = 2.15, propagation = 0.035, curvature = 1.1,
(E1, I1) distance = 7, α = −0.45, σ = 0.95, β = 2.9, propagation =
0.05, curvature = 1.3, (F1, J1) distance = 9, α = −0.55, σ = 1.1,
β = 3.25, propagation = 0.07, curvature = 1.5 are values set for
(viii) the contrecoup contusion and (ix) subdural haematoma by
shape detection approach.

(ix) K1

Figure 4: (column K1) Values set for the subdural hygroma (x) are
conductance = 2.5, iterations = 11, lower = 0.015, scale level =
0.15 by watershed approach.

Table 4: Internal constraints for watershed.

Watershed

Conductante term 2 ≤ conductance ≤ 7

Iterations 10 ≤ iterations ≤ 20

Lowerthreshold 0.001 ≤ Threshold ≤ 0.1

Output scale level 0.15 ≤ Scale level ≤ 0.30

dimensional medical images where basically the algorithmic
representation is used.

Two important parameters, threshold and level control
the output of this watershed segmentation, as referred to in
Table 5. The purpose of the threshold parameter is to set
the absolute minimum height value. The level parameter
controls the depth of metaphorical flooding of the image.
Raising and lowering the level influence the number of
segments in the basic segmentation that are merged to
produce the final output. A level of 1.0 is analogous to
flooding the image up to a depth that is 100 percent of
the maximum value in the image. Level values of interest
are typically low as illustrated in Figure 4, that is, less than
about 0.40 since higher values will quickly undersegment the
image.

The threshold parameter cannot exceed the value of
0.1 as illustrated in Figure 4(K1) to represent the gradient
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Table 5: Internal constraints for region growing.

Confidence connected

Multiplier 0.05 ≤multiplier ≤ 2.5

Connected threshold

Lower threshold 150 ≤ lower ≤ 175

Upper threshold 175 ≤ upper ≤ 205

Neighbourhood

Lower threshold 140 ≤ lower ≤ 175

Upper threshold 170 ≤ upper ≤ 205

Table 6: Tables of required constraints for contour extraction of
pathological features.

Computational pipeline

Conductante term 2

Iterations 10

Lower threshold 0.05

Output scale level 0.15

Domain sigma 0.015

Range sigma 0.85

Time step 0.125

magnitude of intensities which are a percentage of the maxi-
mum depth of the feature so as to avoid oversegmentation.

3.1.3. Region growing

In this approach, a seed is selected from the data set
manually, and the algorithm engulfs the relevant region
up to its boundary using some connectedness approach to
the surrounding pixels as referred to [16]. Basically, the
algorithmic representation of the region growing procedure
is used for the confidence connected, connected threshold,
and neighbourhood approaches.

The NumberOfIterations and TimeStep which are set as
default values of 5 and 0.125 for 2D images, as referred to
in Table 6. The itkConfidenceConnectedImageFilter class is
used for the segmentation itself. This requires the definition
of two parameters. The factor f which determines the extent
of the range of intensities and the number of iterations
specifies the homogeneity of the structure to be segmented.
In this context, the multiplier factor is more important than
the number of iterations, to avoid the region to engulf the
entire image as illustrated in Figure 5(L1).

The range of values for the lower threshold and
upper threshold varies between the minimum of 140 and
maximum of 205. This allows for the usage of various
pixel intensities to be identified for the computation of
the gradient magnitude intensities due to its sensitivity to
thresholds. As illustrated in Figure 5(P1), a minimum value
of threshold 140 and maximum value of threshold 170
show a compression of the segmented feature, and the most
exact representation of the segmented feature is illustrated in
Figure 5(Q1) with a minimum of 150 and maximum of 180.
No segmented feature expansion is obtained through this

(x) L1 M1 N1 O1

(xi) P1 Q1 R1 S1

Figure 5: (L1) multiplier = 2.5, (M1) multiplier = 2.0, (N1)
multiplier = 1.5, (O1) multiplier = 1.0, (P1) lower = 140, upper =
170, (Q1) lower = 150, upper = 180, (R1) lower = 155, upper =
190, (S1) lower = 160, upper = 195 are (xi) values set
for the contrecoup contusion by confidence connected, for (xii)
contrecoup contusion by neighbourhood connected.

range, but still a compressed segmented feature is obtained
with the minimum of 160 and maximum of 195 as illustrated
in Figure 5(S1).

The nonhemorrhagic contusion is well segmented by the
neighbourhood connected threshold approach. The varying
range of minimum and maximum values of threshold of
140 and 205 allows the neighbouring filter to consider
neighbouring pixels intensities instead of only the current
pixel intensity. This is done by also accepting or rejecting
small structures found inside or outside the lesion. Since
the lesion is heterogeneous, the structuring element of the
feature is well surrounded by the exact evaluation of gradient
magnitude densities resulting in the exact segmented feature.

3.2. Constraints

The influence of each constraint has a direct impact on
each lesion type, which is the most crucial part of the work
undertaken. The segmented lesions types vary differently or
constantly depending upon the range of the applied con-
straint. These variations are also assessed by the numerical
evaluations and comparisons of the results.

3.2.1. Numerical constraints evaluations

Herewith is the sets of constraints associated to the seg-
mented lesion types after segmentation process.

The sigma constraint

The sigma “σ” constraint is efficient for the segmentation
of the brain atrophy, extracranial haematoma, subdural
haematoma and nonhemorrhagic contrecoup contusion.
The edge of the segmented feature is kept linearly constant
by the proper assignment of its numerical value.

Two ranges of values such as 0.0005 ≤ σ ≤ 0.325 and 0.45
≤ σ ≤ 1.1 have been experimented. Negative and null values
are forbidden resulting in leakages at the edges of the feature
since the pixel type is of unsigned short type. Values less than
0.0005 result in expansion and values greater than 1.1 result
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in reduction of the segmented feature. According to Figure 1,
the most appropriate result for the segmented feature lies in
columns (B, F, J, N) and (C, G, K, O) within a range of 0.0125
to 0.0225.

As illustrated in Figure 1, these four lesions types are
located either at the rim of the dura matter or just at the
outline of the bone skull with a slight varying range of pixels
intensities within each lesion type. The very slight range for
an efficient segmented lesion is 0.0100 which explains the
closeness and narrowness of the lesion to an edge.

The alpha constraint

The alpha “α” constraint is efficient for the segmentation
of the brain atrophy, extracranial haematoma, subdural
haematoma, and nonhemorrhagic contrecoup contusion.
The edge of the segmented feature is kept linearly constant by
the proper assignment of its numerical value till a threshold
is applied to a time crossing map to the white matter.

Two ranges of values such as −0.0005 ≤ α ≤ −0.575 and
−0.25 ≤ α ≤ −0.55 have been experimented. Negative and
null values are used according to the requirements though
the pixel is of unsigned short type. Values less than −0.0005
result in expansion, and values greater than −0.55 result in
reduction of the segmented feature. According to Figure 1,
the most appropriate result for the segmented feature lies
in columns (B, F, J, N) and (C, G, K, O) within a range of
−0.0015 to −0.375.

As illustrated in Figure 1, these four lesions types are
located either at the rim of the dura matter or just at the
outline of the bone skull with a slight varying range of pixels
intensities within each lesion type. The very slight range for
an efficient segmented lesion is −0.360 which explains the
closeness and narrowness of the lesion to an edge.

The beta constraint

The beta “β” constraint is efficient for the segmentation
of the brain atrophy, extracranial haematoma, subdural
haematoma, and nonhemorrhagic contrecoup contusion.
The edge of the segmented feature is kept linearly constant
by the proper assignment of its numerical value.

Two ranges of values such as 0.0005 ≤ β ≤ 4.00 and
1.85 ≤ β ≤ 3.2 have been experimented. Negative and null
values are forbidden resulting in leakages at the edges of the
feature since the pixel type is of unsigned short type. Values
less than 0.0005 result in expansion, and values greater than
4.00 result in reduction of the segmented feature. According
to Figure 1, the most appropriate result for the segmented
feature lies in columns (B, F, J, N) and (C, G, K, O) within a
range of 0.0025 to 0.2255.

As illustrated in Figure 1, these four lesions types are
located either at the rim of the dura matter or just at the
outline of the bone skull with a slight varying range of pixels
intensities within each lesion type. The very slight range for
an efficient segmented lesion is 0.2230 which explains the
closeness and narrowness of the lesion to an edge.

The distance constraint

The initial distance “initial distance” constraint is efficient
for the segmentation of the subdural haematoma and
nonhemorrhagic contrecoup contusion. The initial distance
is the distance between the initial surface and the boundary
of the feature which is assigned a numerical value.

Two ranges of values such as 4≤ initial distance≤ 7 and 3
≤ initial distance ≤ 9 have been experimented. Negative and
null values are forbidden because this constraint is a crucial
requirement to locate the lesion. Values less than 3 result
in expansion, and values greater than 9 result in reduction
of the segmented feature. According to Figure 2, the most
appropriate result for the segmented feature lies in columns
(W, A1) and (X, B1) within a range of 6 to 7.

As illustrated in Figure 2, these two lesion types are
located at the rim of the dura matter with a slight varying
range of pixels intensities within each lesion type. The very
slight range for an efficient segmented lesion is 1 which
explains the closeness and narrowness of the lesion to an
edge.

The lower threshold constraint

The lower threshold “lower” constraint is efficient for the
segmentation of the subdural haematoma, and nonhemor-
rhagic contrecoup contusion has been experimented. The
lower threshold accesses current pixel intensities within the
feature.

The ranges of values such as 150 ≤ lower ≤ 175 and 140
≤ lower ≤ 175 have been experimented. Negative and null
values are forbidden because if not the feature will not be
selected at all. Values less than 150 result in expansion, and
values greater than 175 result in reduction of the segmented
feature. According to Figure 2, the most appropriate result
for the segmented feature lies in columns (W, A1) and (X,
B1) within a range of 160 and 175.

As illustrated in Figure 2, these two lesions types are
located at the rim of the dura matter with a slight varying
range of pixels intensities within each lesion type. The very
slight range for an efficient segmented lesion is 15, which
explains the closeness and narrowness of the lesion to an
edge.

The upper threshold constraint

The upper threshold “upper” constraint is efficient for the
segmentation of the brain atrophy, extracranial haematoma,
subdural haematoma and nonhemorrhagic contrecoup con-
tusion. The upper threshold accesses neighbouring pixel
intensities of similar intensities within the feature.

Two ranges of values such as 175 ≤ upper ≤ 205 and
170 ≤ upper ≤ 205 have been experimented. Negative and
null values are forbidden because if not the feature won’t be
selected at all. Values less than 140 result in expansion, and
values greater than 175 result in reduction of the segmented
feature. According to Figure 2, the most appropriate result
for the segmented feature lies in columns (W, A1) and (X,
B1) within a range of 195 to 205.
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define a slope for each pixel
for each pixel value,

calculate topographical distance
estimate gradient for gray-level values.
for each image gradient threshold identification,

perform edge-preserving,
represent gradient magnitude,
generate merge tree,
access segmented image,
acquire segmentation tree.

Algorithm 2: Algorithmic representation of watershed procedure.

As illustrated in Figure 2, these two lesions types are
located at the rim of the dura matter with a slight varying
range of pixels intensities within each lesion type. The very
slight range for an efficient segmented lesion is 10 which
explains the closeness and narrowness of the lesion to an
edge.

The conductance constraint

The conductance constraint is efficient for the segmentation
of the subdural hygroma. This constraint helps for a proper
definition of the boundary of the lesion.

The range of values such as 2 ≤ conductance ≤ 7 has
been experimented. Negative and null values are forbidden
because if not the feature’s boundary will not be selected at
all. Values less than 2 result in undersegmentation, and values
greater than 7 result in oversegmentation of the feature.
According to Figure 4, the most appropriate result for the
segmented feature lies in column (K1) with a value of 2.5.

The iterations constraint

The iterations constraint is efficient for the segmentation
of the brain atrophy, extracranial haematoma, subdural
haematoma, and nonhemorrhagic contrecoup contusion.
This constraint determines the mean and standard variance
of the neighbouring pixels to be calculated and consequently
the number of times to repeat the segmentation.

The range of values such as 10 ≤ iterations ≤ 20 has been
experimented. Negative and null values are forbidden so as to
obtain the best segmentation result. Values less than 0.0005
result in expansion, and values greater than 4.00 result in
reduction of the segmented feature.

3.2.2. Comparison of various results for
constraints evaluations

(i) The sigma constraint

These values 0.0005, 0.0125, 0.0225, and 0.0325 are illus-
trated in Figure 1, and these values 0.45, 0.65, 0.95, and 1.1
are illustrated in Figure 3.

for each pixel value from seed points,
apply edge-preserving,
instantiate smoothing,
assign pointer for smoothing and edge-preserving.

Algorithm 3: Algorithmic representation of region growing pro-
cedure.

(ii) The alpha constraint

These values −0.0005, −0.0015, −0.375, and −0.575 are
illustrated in Figure 1, and these values −0.25, −0.35, −0.45,
and −0.55 are illustrated in Figure 3.

(iii) The beta constraint

These values 0.0005, 0.0025, 0.2255, and 4.00 are illustrated
in Figure 1, and these values 1.85, 2.15, 2.9, and 3.25 are
illustrated in Figure 3.

(iv) The initial distance constraint

These values 4, 5, 6, and 7 are illustrated in Figure 2, and
these values 3, 5, 7, and 9 are illustrated in Figure 3.

(v) The lower threshold constraint

These values 150, 155, 160, 175 are illustrated in Figure 2,
and these values 140, 150, 155, 160 are illustrated in Figure 5.

(vi) The upper threshold constraint

These values 175, 185, 195, 205 are illustrated in Figure 2,
and these values 170, 180, 190, 195 are illustrated in Figure 5.

3.2.3. Requirements

The traumatic brain injuries segmented are brain atro-
phy, subdural hygroma, subdural haematoma, nonhemor-
rhagic contrecoup contusion, and extracranial haematoma
obtained from a set of 5 patients.

These axial CT scans obtained from Centre Hospitalier
De Bayonne are of dimension 512 × 512 and thickness
2.5 mm varying in between 38 to 182 slices effected from
different medical practitioners which have been converted
into 256× 256. These slices show varying levels of intensities
depending on the intra and intervisual perception of these
practitioners.

Before segmentation proceeds, these images are prepro-
cessed by the bilateral image filter which is an edge preserving
smoothing filter. Smoothing is performed by using domain
and range neighbourhoods. Pixels that are close to a pixel in
the image domain and similar to a pixel in the image range
are used to calculate the filtered value as referred to Tomasi
and Manduchi [21].
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4. CONTOUR EXTRACTION

In our approach, the contour is a feature tracking of
the lesions as referred to Loncaric et al., Deriche, and
Roover et al. [22–24]. CT scans have a static scalar field
of vision as mentioned in Sohn and Bajaj [25]. Diffusion
properties have been applied in our computational pipeline
preceded by smoothing and edge-preserving from a bilateral
filter using open-source software insight Toolkit (ITK) [16].
The diffusion data enhances the properties of the compo-
nents in these CT scan images as mentioned in Breen et al.
[26] and Straka et al. [26, 27]. The gradient magnitude of the
diffusion anisotropy is analysed by the watershed transform
by graphing a function to create the merge tree. The gradient
magnitude of the watershed pixels is transformed into the
gradient magnitude of the diffusion anisotropy.

Mathematical morphology grayscale operators such as
dilation and erosion use the merge tree of these connected
flood levels of varying values. Each intersection node of
the connected flood levels is used to create a graph. The
higher values of the flood levels receive the maximum
values of the dilation operator as referred to the work of
Droogenbroeck [28], Droogenbroeck and Talbot [29], and
Vardavoulia et al. [30] and the lower values of the flood levels
receive the minimum values of the erosion operator. The
nodes connect the intersection points which are linked so
as to represent the contours corresponding to their features.
Finally, some smoothing has been performed in a viewer for
edge-preserving of the eroded output images.

4.1. Methodology

After the raw CT scans are preprocessed by the bilateral
filter. The h(x) components of the output image move to the
gradient anisotropic diffusion image filter. The anisotropic
diffusion measures the diffusion properties of the water
molecules in the cerebral tissues C where D is the diffusion
coefficient:

δC

δt
= ∇· (D∇C),

D =
(
Dxx Dxy

Dyx Dyy

)
.

(2)

The invariants are the eigenvalues of diffusion D which are
the roots of corresponding characteristic:

λ3 − C1 · λ2 + C2 · λ− C3 = 0, (3)

with coefficients

C1 = λ1 + λ2 + λ3,

C2 = λ1λ2 + λ1λ3 + λ2λ3,

C3 = λ1λ2λ3,

(4)

which are proportional to the sum of the radii and surface
area of the pathological feature. The dataset is described as
(C1,C2,C3) since Ci are the coefficients of the character-

istic equation. Considering the dimensionless combination
C1C2/C3, it becomes

C1C2

C3
= 3 +

λ2 + λ3

λ1
+
λ1 + λ3

λ2
+
λ1 + λ2

λ3
, (5)

where a new dimensionless anisotropy measure is defined as

Ca = 1
6

[
C1C2

C3
− 3
]

(6)

for a linear, directional diffusion (λ1 � λ2 ≈ λ3) is equal to

Climit
a ≈ 1

3

[
1 +

λ1

λ3
+
λ3

λ1

]
. (7)

Thus, Ca is always ∼λmax/λmin and measures the gradient
magnitude of the diffusion anisotropy.

The watershed transform is calculated on the absolute
value of the gradient with high values at features’ contours.
Calculation of the watershed transform using arc weights in a
graph allows the substitution of the usual gradient estimation
by absolute differences of gray level calculated directionally
during the flooding process to achieve a higher resolution.
The lower slope is redefined as

LS(p) = max
q∈NG(p)∪p

(
g(p, q)
d(p, q)

)
, (8)

where g(p, q) is a new function for the link (p, q). An
equivalent function is calculated for the lower neighbours
from

Γ(p) =
{
p′ ∈ N(p) | g(p, p′

) = max
p′′∈NG(p)∪p

g
(
p, p′′

)}
.

(9)

This condition allows the use of the directional diffusion
anisotropy gradient magnitude value in substitution of the
absolute value of the gradient resulting in{

p ∈ N , g(p, q) = g
(
p,Ci

)}
, (10)

where the neighbor space N is referred to as a set Z in which
the component q of the function link is substituted by the
component Ci.

The discrete morphological gradient is

δ( f )− ε( f ). (11)

The erosion and dilation functions by a gray-scale structur-
ing element as referred to Droogenbroeck, and Darbon et al.
[28, 31], g : G→Z are applied to the new links {g(p,Ci)}
such that

ε( f ) = ( f � g)(x), (12)

where

( f � g)(x) = min
y∈G

{
f (x + y) + g(y)

}
,

δ( f ) = ( f ⊕ g)(x),
(13)

where

( f ⊕ g)(x) = max
y∈G, x−y∈F

{
f (x − y) + g(y)

}
, (14)

respectively, where x, y ∈ Z2 are the spatial coordinates.
F,G ⊆ Z2 are the domains of the grayscale image (function)
and grayscale structuring element.
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Figure 6: Program flowchart for contour extraction.

4.2. Program flowchart for contour extraction

Let f (x) be the original grayscale image defined in the
domain Di and let g(x) be the output image as illustrated in
Figure 6.

4.3. Implementation and results

The contour extraction traced out the exact feature as
illustrated in Figure 7 and Table 6 of constraints.

4.4. Reasons for contour extraction technique
compared to active contour model

The CT scans are from an “8-barrette” CT scanner. The
removal of noise and filtering are a tedious task to get an
optimized contrast of these CT images.

(xii) Y1 Z1

Figure 7: k-means classification.

Since the active econtour geodesic/geometric models as
referred to the work of Yoon et al. [32] are sensitive to these
above fluctuations, the experimented technique has been
implemented and preferred to active contour model because
of the varying strength of the edges of these CT scans.

The speed at which the contours have been extracted
by the experimented technique is fast compared to another
model. Since the calculation of the speed of convergence with
active contour model will require other parameters to be
implemented.

5. CONCLUSIONS

We have presented a new methodology through the gradient
calculation for the feature sets further enhanced by mathe-
matical morphology grayscale operators. This computational
pipeline technique is applied to CT scan images illustrating
a subdural haemorrhage, a nonhemorrhagic contusion, a
subdural hygroma, and a brain atrophy. In the case of the
subdural hygroma, this technique demonstrates similar or
superior performance to manual segmentation by experts.
Without any doubt, the precision and accuracy of the
segmented features in the contour tracking are reliable for
diagnostic or presurgery purposes.

The deductions of the particular pathological feature
extraction by particular segmentation procedures are mostly
relevant in the selection process. The validation of the
constraints settings of each segmentation procedure based
upon the particular characteristics of trauma lesions is the
determinant factors to be considered.

Finally, the substitution of one constituent of the link
component in the gradient function of the watershed
transform in the computational pipeline by the constituent
of linear directional diffusion anisotropy gradient magnitude
is one of the new methodology brought forward. The
classification of these lesions by pattern recognition is tackled
in another paper work.

APPENDIX

CLASSIFICATION BY K-MEANS

The k-means model defines classes that represent statistical
distribution of intensity values in the pixels as referred
to [16].
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(xiii) T1

(xiv) U1

(xv) V1

(xvi) W1

(xvii) X1

Figure 8: (T1) contour extraction of subdural haematoma and
nonhemorrhagic contusion (xiii), (U1) contour extraction of
subdural hygroma (xiv), slice 17, (V1) contour extraction of sub-
dural hygroma (xv), slice 15, (W1)contour extraction of subdural
hygroma (xvi), slice 16, (X1) contour extraction applied to brain
atropy on left frontal lobe (xvii).

The following results are for the subdural haematoma
and contrecoup contusion as illustrated in Figure 7.

Figure 7, image(Y1): parameters are smoothing factor: 0,
number of classes: 3, means: 14.8, 91.6, 134.9.

Result of estimated mean:

cluster[0] estimated mean: 33.6571,

cluster[1] estimated mean: 101.885,

cluster[2] estimated mean: 205.597.

Figure 7, image(Z1): parameters are smoothing factor: 1,
number of classes: 5, means: 17.9, 112.6, 154.9, 182, 201.

Result of estimated mean:

cluster[0] estimated mean: 23.831,

cluster[1] estimated mean: 70.5066,

cluster[2] estimated mean: 114.158,

cluster[3] estimated mean: 190.176,

cluster[4] estimated mean: 232.982.

The estimated mean in the model estimated by the
classifier.
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